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In evolutionary terms, GH and intracellular STAT 5 signaling
is a very old regulatory system. Whereas insulin dominates
periprandially, GH may be viewed as the primary anabolic
hormone during stress and fasting. GH exerts anabolic effects
directly and through stimulation of IGF-I, insulin, and free
fatty acids (FFA). When subjects are well nourished, the GH-
induced stimulation of IGF-I and insulin is important for an-
abolic storage and growth of lean body mass (LBM), adipose
tissue, and glycogen reserves. During fasting and other cat-
abolic states, GH predominantly stimulates the release and
oxidation of FFA, which leads to decreased glucose and pro-
tein oxidation and preservation of LBM and glycogen stores.
The most prominent metabolic effect of GH is a marked in-
crease in lipolysis and FFA levels. In the basal state, the effects
of GH on protein metabolism are modest and include in-
creased protein synthesis and decreased breakdown at the
whole body level and in muscle together with decreased
amino acid degradation/oxidation and decreased hepatic
urea formation. During fasting and stress, the effects of GH on

protein metabolism become more pronounced; lack of GH dur-
ing fasting increases protein loss and urea production rates by
approximately 50%, with a similar increase in muscle protein
breakdown. GH is a counterregulatory hormone that antag-
onizes the hepatic and peripheral effects of insulin on glucose
metabolism via mechanisms involving the concomitant in-
crease in FFA flux and uptake. This ability of GH to induce
insulin resistance is significant for the defense against hypo-
glycemia, for the development of “stress” diabetes during fast-
ing and inflammatory illness, and perhaps for the “Dawn”
phenomenon (the increase in insulin requirements in the
early morning hours). Adult patients with GH deficiency are
insulin resistant—probably related to increased adiposity, re-
duced LBM, and impaired physical performance—which tem-
porarily worsens when GH treatment is initiated. Con-
versely, despite increased LBM and decreased fat mass,
patients with acromegaly are consistently insulin resistant
and become more sensitive after appropriate treatment.
(Endocrine Reviews 30: 152–177, 2009)
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I. Introduction

PHYLOGENETICALLY, GH IS AN ancestral hormone that
has been identified in the pituitary of primitive verte-

brates, such as the jawless sea lamprey fish (1). In addition
signal transducers and activators of transcription (STAT) 5, a
principal intracellular mediator of GH signaling, exhibits a very
high degree of homology to invertebrate and prevertebrate
STATs, reflecting the ancient nature of the GH/STAT signaling
system (2). Intriguingly, it also appears that insulin-like pep-
tides, such as IGF-I and proinsulin, have evolved from a com-
mon gene and that these peptides are much older than both the
pancreas and insulin (3). In line with this phylogenetic hierar-
chy, it has been shown that GH, together with prolactin and
human placental lactogen, stimulates �-cell proliferation, insu-
lin gene expression, and insulin biosynthesis and secretion (4).

In terms of evolutionary biology, the effects of GH on
substrate metabolism in humans are simple: during condi-
tions of energy surplus, GH, in concert with IGF-I and in-
sulin, promotes nitrogen retention, and when food is sparse,
GH alters fuel consumption from the use of carbohydrates
and protein to the use of lipids, thereby allowing conserva-
tion of vital protein stores. Undoubtedly, this master fuel
switch from carbohydrate utilization to lipolysis and lipid
oxidation has played a major role for survival and will con-
tinue to prevail whenever shortage of nutrients again may
threaten. Apart from lipid-mediated protein conservation,
GH possesses direct and indirect—via IGF-I and insulin—
protein anabolic effects as indicated in Fig. 1. This concept of
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a central metabolic role of GH emerges from three seminal
hypotheses from the early 1960s:

1) The “thrifty genotype” hypothesis by J. V. Neel (5),
according to which evolution has favored survival of indi-
viduals genetically equipped with a good appetite and the
ability to store surplus calories as fat.

2) The “glucose fatty acid cycle” by P. J. Randle et al. (6),
according to which free fatty acids (FFA) from fat stores
compete with and displace glucose utilization, leading to
insulin resistance. Because sustained glucose release is de-
pendent on gluconeogenesis from amino acids, increased fat
utilization and diminished glucose utilization also decrease
the need for protein breakdown.

3) The “feast and famine cycle” by Rabinowitz and Zierler
(7), according to which insulin is the major anabolic hormone
storing all fuels during feast and GH is the major anabolic
hormone during famine and stress, sparing glucose and pro-
tein at the expense of lipids.

As indicated in Fig. 2, these hypotheses imply that during
periods of food surplus, predisposed individuals overeat and
gain weight. On one side, the ensuing obesity renders the
individual susceptible to insulin resistance, diabetes, and
cardiovascular disease, and, on the other side, fat depots and
high levels of FFA safeguard the individual during famine.
It should be underlined that the proposed potential of insulin
resistance and hyperinsulinemia to promote protein conserva-
tion merely rests on circumstantial evidence that high levels of
insulin restrict protein breakdown and increase protein syn-
thesis. Unlike cardiovascular morbidity, which in general af-
fects people at the grand parental stage, famine poses a greater
threat to human survival because all age groups are inflicted
and reproduction is jeopardized. The cycling between feast and
famine is regulated by insulin building up glycogen and fat,
insulin and GH building up protein, and GH with low insulin
levels triggering fat mobilization and utilization.

Thus, in many ways the metabolic role of GH in humans is
best understood in the long perspective of evolutionary fuel
economy. In patients with acromegaly and GH deficiency, the
metabolic effects of GH lead to distinct clinical features as de-
lineated below.

The present review seeks to outline current knowledge
about the affects of GH on lipid, protein, and glucose me-
tabolism in humans. The major focus is on the effects in
adults, both healthy subjects and patients with abnormal GH
status, whereas the critical importance of GH and IGF-I for
statural growth and somatic maturation in childhood and
adolescence is beyond the scope of this review.

II. Background

Human GH is a 191-amino acid, 22-kDa polypeptide, that
is secreted from the pituitary gland (8, 9). In the circulation,
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FIG. 1. Schematic presentation of the metabolic actions of GH with
emphasis on the direct stimulation of lipolysis and the more indirect
preservation of protein. These two actions are the most important,
and particularly so under conditions of food deficiency and stress.
Protein storage occurs through inhibition of protein breakdown and
stimulation of protein synthesis in muscle and other tissues and
through inhibition of amino acid degradation/ureagenesis in liver.
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FIG. 2. Schematic integration of the “feast and famine cycle” by Rabinowitz and Zierler, the “thrifty genotype hypothesis” by Neel, and the
“glucose-fatty acid cycle” by Randle in the obese and in the lean phenotype. GH is the principal anabolic hormone during food restriction and
stress, and insulin is the principal anabolic hormone during food excess. People with the lean phenotype are exposed to and threatened by hunger,
and obese people by cardiovascular disease. FFA play a dual role in promoting insulin resistance during feast and preserving protein during
famine.
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various molecular forms of GH exist, a majority of which are
bound to carrier proteins corresponding to the extracellular
domain of the GH receptor (GHR) (10, 11). It has been esti-
mated that free monomeric 22-kDa GH represents only ap-
proximately 20% of total immunoreactivity in plasma (10,
11). More recently, a novel assay of free GH has been de-
veloped, and implementation of this shows that free GH
depends much on prevailing total GH and GH binding pro-
tein concentrations (12). In man, GH is secreted episodically
from the pituitary gland with a major surge at the onset of
slow-wave sleep and less conspicuous secretory episodes a
few hours after meals (13–16). A healthy young adult secretes
roughly 0.25 mg/m2 body surface of GH per 24 h (�0.4–0.5
mg/24 h), which mainly occurs as “pulses within pulses”
(13). During fasting and certain conditions of physical stress,
GH secretion is amplified, whereas excess of fuels such as
glucose and lipid intermediates inhibits GH release in
healthy man (13, 14, 17, 18). The secretion of GH is maximal
at midpuberty, which is accompanied by very high circu-
lating IGF-I levels as previously reviewed (19). Interestingly,
there is compelling evidence to suggest that the activated
GH/IGF-I axis at puberty is causally linked to the concom-
itant increase in insulin resistance (20). Adulthood is asso-
ciated with a gradual decline in GH secretion and circulating
IGF-I levels (21). The degree to which this is related to se-
nescent changes in body composition and organ function
remains controversial, but it is noteworthy that accumulation
of visceral fat rather than chronological age is the most im-
portant predictor of GH status in midlife adults (22).

Circulating IGF-I is predominately stimulated by GH and
is produced in the liver in the presence of sufficient nutrient
intake and elevated portal insulin levels (23), and IGF-I is
critical for promoting the protein anabolic effects of GH (24).
Circulating IGF-I concentrations are reduced during fasting,
and GH secretion is amplified, whereas infusion of IGF-I
suppresses GH secretion (25), strongly suggesting a feedback
regulation by IGF-I on GH secretion. This notion is supported
by the observation that a single dose of IGF-I in patients with
type 1 diabetes mellitus abrogates GH hypersecretion (26).
More recent experiments have revealed that liver-specific
IGF-I gene-deleted mice exhibit marked reductions in circu-
lating IGF-I and elevated GH levels (27), which again implies
a feedback loop between circulating IGF-I and GH release.

These observations suggest that the IGF-I-independent ef-
fects of GH are mainly exerted during states of relative fuel
shortage, such as fasting or prolonged exercise, and accord-
ingly that these states appear to be important domains for
direct actions of GH.

One of the first pieces of evidence showing that GH is in-
volved in the regulation of intermediary metabolism was pub-
lished in 1936 (28), when the 1946 Nobel laureate B. A. Houssay
reported that hypophysectomized dogs are hypersensitive to
the actions of insulin and are prone to hypoglycemia. Later,
when pituitary human GH extracts became available, it was
shown that injection of large amounts of GH in healthy subjects
and patients with GH deficiency and diabetes stimulated li-
polysis and led to hyperglycemia (29–31). Additionally, classic
studies in which pituitary GH was perfused locally through the
brachial artery demonstrated that GH acutely inhibited muscle
glucose uptake in normal postabsorptive subjects (32–34).

GH has acute and chronic metabolic effects. As outlined
below the acute actions include stimulation of lipolysis and
increased FFA levels in the blood. More prolonged GH ex-
posure, e.g., repetitive GH pulses in the presence of adequate
nutrient supply and subsequent elevations in systemic and
portal insulin levels, induces hepatic IGF-I production (23).
This is accompanied by suppression of IGF binding protein
(IGFBP)-1, which may act to increase free IGF-I. Eventually
protein stores, lean body mass (LBM), and a majority of body
organs grow, and body fat mass decreases (Fig. 3). The order
and time sequence of events are of importance. GH stimu-
lates lipolysis and causes insulin resistance within 1–2 h, and
these effects disappear after approximately 8 h (35, 36). The
stimulating effect of GH on IGF-I production and action is a
more chronic process, which, as previously discussed, de-
pends on a positive energy balance and ensuing elevations
in insulin. Thus, during prolonged sc GH administration, the
actions of IGF-I and insulin prevail 8–10 h after each injec-
tion. Interestingly, the liver-specific IGF-I gene-deleted mice
mentioned previously show normal postnatal growth and
development despite low circulating IGF-I levels, which in-
dicates an important role for direct GH effects in target tis-
sues such as adipose tissue, bone, and skeletal muscle, which
may involve stimulation of local IGF-I production (27). In
support of the importance of GH per se, two very recent
studies failed to record any independent effects of GH-in-
duced hyperinsulinemia on whole body and muscle protein
metabolism in humans and in a pig model (37, 38).

III. Growth Hormone Signaling in Human Models

GHR signaling is a separate and prolific research field by
itself, as recently reviewed (39). This section will focus on
recent data obtained in human models.

The GHR belongs to class I of the hematopoietin super-
family of cytokine receptors, which includes more than 30
members, among others prolactin, erythropoietin, leptin,
granulocyte stimulating factor, and several IL (e.g., IL-2, IL-3,
and IL-6) (40). GHRs have been identified in many tissues
including muscle, fat, liver, heart, kidney, brain, and the
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↓Insulin

↓ IGFBP-1
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disposal
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FIG. 3. A modified version of the feast-famine cycle including vari-
ations in the secretion and action of insulin and GH and the ensuing
changes in IGFBP-1 and IGF-I. In the immediate postprandial period,
insulin acts alone to promote storage of glucose. In the remote post-
absorptive or fasting state, GH acts alone to promote lipolysis. In the
intermediate phase, insulin and GH act in synergy to promote IGF-I
production and bioactivity and subsequent protein synthesis.

154 Endocrine Reviews, April 2009, 30(2):152–177 Møller and Jørgensen • Metabolic Effects of GH

Downloaded from https://academic.oup.com/edrv/article-abstract/30/2/152/2355062
by guest
on 26 February 2018



pancreas (41). Activation of receptor-associated Janus kinase
(JAK) 2 is considered the critical step in initiating GH sig-
naling. One GH molecule binds to two GHR molecules, and
it is believed that preformed, unliganded GHR dimers exist
(39). After GH binding, the intracellular domains of the GHR
dimer undergo rotation, which is thought to bring together
the two intracellular domains, each of which binds one JAK2
molecule. This in turn induces cross-phosphorylation of ty-
rosine residues in the kinase domain of each JAK2 molecule,
followed by tyrosine phosphorylation of the GHR. Phos-
phorylated residues on GHR and JAK2 form docking sites for
different signaling molecules including STAT1, -3, -5a, and
-5b, the MAPK pathway, and the phosphatidylinositol
3-kinase (PI 3-kinase) pathway (39). STATs bound to the
activated GHR-JAK2 complex are subsequently phosphor-
ylated on a single tyrosine by JAK2, after which they dimer-
ize and translocate to the nucleus, where they bind to DNA
and act as transcription factors for targeted genes. A STAT5b
binding site has recently been characterized in the IGF-I gene
promoter region, which mediates GH-stimulated IGF-I gene
activation (42).

Down-regulation or attenuation of JAK2-associated GH
signaling is mediated by a family of cytokine-inducible sup-
pressors of cytokine signaling (SOCS), of which there are
eight members: SOCS 1-7, and the cytokine-inducible SH2-
domain-containing proteins (43). SOCS proteins bind to
phosphotyrosine residues on the GHR or JAK2 and suppress
GH signaling by inhibiting JAK2 activity and competing with
STATs for binding on the GHR or by inducing proteasomal
degradation of the GHR complex.

Data on GHR signaling derive mainly from rodent models
and experimental cell lines, although GH-induced activation
of the JAK2/STAT5b and the MAPK pathways has been
recorded in cultured human fibroblasts from normal human
subjects (44). STAT5b in human subjects is critical for GH-
induced IGF-I expression and statural growth as demon-
strated by the identification of mutations in the STAT5b gene
of patients presenting with severe GH insensitivity in the
presence of normal GHR (45). GHR signaling in human mod-
els in vivo has been reported in a study in healthy young male
subjects exposed to an iv GH bolus vs. saline (46). In muscle
and fat biopsies, significant STAT5b tyrosine phosphoryla-
tion was recorded 30–60 min after GH exposure, compared
with saline (46) (Fig. 4). Evidence of less intense STAT5b
activation associated with small spontaneous GH bursts in
the saline study was also observed in several subjects. DNA
binding activity by STAT5 assessed by the EMSA was evi-
dent in fat but not muscle tissue samples. Likewise, signif-
icant GH-dependent IGF-I mRNA expression was only de-
tectable in adipose tissue, whereas SOCS-1 and SOCS-3
mRNA expression tended to increase in muscle and fat,
respectively (46). There was no evidence of GH-induced ac-
tivation of PI 3-kinase, Akt/protein kinase B (PKB), or MAPK
in either tissue. The latter observation is noteworthy in re-
lation to the insulin antagonistic effects of GH.

There is animal and in vitro evidence to suggest that insulin
and GH share postreceptor signaling pathways (47). Con-
vergence has also been reported at the levels of STAT5 and
SOCS3 (48), as well as on protein kinases comprising the
major insulin receptor signaling pathway: insulin receptor

substrates (IRS) 1 and 2, PI 3-kinase, Akt, and ERK 1 and 2
(49, 50). Studies in rodent models suggest that the insulin-
antagonistic effects of GH in adipose and skeletal muscle
tissue are PI 3-kinase-dependent through direct up-regula-
tion of the p85� subunit and subsequent decrease in insulin-
stimulated PI 3-kinase activity (47, 51). One study assessed
the impact of a GH infusion on insulin sensitivity and the
activity of PI 3-kinase, as well as PKB/AKt in skeletal muscle,
in a controlled design involving healthy young subjects (52).
The infusion of GH induced a sustained increase in FFA
levels and subsequently insulin resistance as assessed by
the euglycemic clamp technique. This was, however, not
associated with any changes in the insulin-stimulated in-
crease in either IRS-1-associated PI 3-kinase or PKB/Akt
activity (Fig. 5) (52). This finding could be time-dependent
because some studies have failed to detect any effects of
FFA on proximal insulin signaling (53). Conversely, it was
subsequently assessed that insulin had no impact on GH-
induced STAT5b activation or SOCS3 mRNA expression
either (54).

A. Conclusion

The JAK2/STAT5b signaling pathway is also activated by
GH in human models and is critical as regards the effects
of GH on linear growth in childhood. There is also evidence
that GH may activate the MAPK pathway in human fibro-
blasts in vitro. The signaling mechanisms subserving the
insulin antagonistic effects of GH in humans, however, re-
main to be unveiled. The available data in humans have
failed to demonstrate significant effects of GH on either basal
or insulin-stimulated PI 3-kinase activity (Fig. 6).

The human in vivo studies were performed in healthy
subjects with single biopsies obtained 30–60 min (46) and 240
min (52) after the start of acute GH exposure. It remains to
be investigated whether sampling at different time points in
relation to acute GH exposure or biopsies obtained in states
of chronic excess or deficiency of GH may reveal additional
effects on the same signaling pathways.

IV. Metabolic Effects of GH in Normal Subjects

A. The basal postabsorptive state

In the basal state, i.e., after an overnight fast, the dominant
effect of GH is stimulation of lipolysis and lipid oxidation. As
previously mentioned, GH secretion in this state occurs in
small discrete bursts, whereas many clinical studies have
employed prolonged exposure to higher levels of GH.

1. Lipid metabolism. “The rise in fatty acids is perhaps the most
sensitive response to GH of any yet described” (274).

The most striking effect of a single exogenous GH pulse is a
marked increase in circulating levels of FFA and ketone bodies
(55), reflecting stimulation of lipolysis and ketogenesis (Fig. 7).
Baseline FFA values usually more than double with peak values
of approximately 1 mmol/liter recorded after 2–3 h. The in-
crease in FFA levels is also robust and lasts for 1–8 h (35, 36, 56).
Pulsatile as well as continuous administration of 70–500 �g of
GH (i.e., from the low to the very high physiological range) to
healthy postabsorptive subjects induces a clear dose-dependent
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elevation of circulating FFA and glycerol levels and increased
lipid oxidation rates, assessed by indirect calorimetry (36, 57–
59). In addition, palmitate tracer dilution has shown a similar
increase in palmitate flux after pulsatile GH exposure (35, 60),
indicative of increased FFA turnover.

As regards the source of FFA, microdialysis studies have
shown that a GH pulse increases glycerol concentrations—
indicative of in situ lipolysis—in both femoral and abdominal
adipose tissue, indicating that both regions contribute (56, 59)
(Fig. 7). It is not known whether visceral adipose tissue
participates, but the finding that long-term GH treatment
decreases visceral fat volume supports this (61). It has been
observed that interstitial muscle glycerol concentrations in-
crease after a GH bolus (35), but this could also reflect spill-
over from the circulating glycerol pool. The finding of in-
creased intramyocellular triglyceride content after GH
exposure (36) argues against mobilization of FFA stored in
muscle as the primary event. The secretory pattern of GH
plays an important role in the diurnal supply of fuel sub-
strates. An investigation of young healthy subjects reported
that the nocturnal GH peaks preceded the early morning rise

of FFA by 2 h (62), a time lag very close to the one found after
GH bolus administration, thus providing evidence that GH
regulates the circadian oscillations in the release and oxida-
tion of lipids and other fuel substrates. The idea is corrob-
orated by studies showing that lack of nocturnal GH release
compromises the physiological overnight surge of lipid fuels
(62–65) and studies implying a correlation between noctur-
nal GH and ketone body concentrations in terms of time and
magnitude (65, 66). Finally, it has been reported that noc-
turnal surges of both GH and FFA are increased, and that
circulating levels of FFA and GH correlate in patients with
type 1 diabetes (67). There is evidence that the lipolytic
response to GH may be blunted in females, older subjects,
and abdominally obese subjects (64, 68, 69), whereas Han-
sen et al. (59) failed to demonstrate any impact of either age
or body composition.

It remains unresolved whether GH directly impacts he-
patic ketogenesis. Some studies suggest so (70–72), but in-
creased hepatic precursor supply of FFA is probably more
important. The potential role of GH in the regulation of
lipogenesis and adipose tissue growth and differentiation in
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FIG. 4. The effect of an iv GH bolus (�) vs., saline (�) in healthy human subjects on total (t) and tyrosine phosphorylated (p) STAT5 expression
assessed by Western blotting in muscle and fat biopsies obtained 30–60 min after exposure. [Adapted from Ref. 46 with permission from The
American Physiological Society].
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humans is also controversial, and it appears that major spe-
cies-specific differences exist (73). Porcine studies suggest
that GH may inhibit lipogenesis and fatty acid synthase (74),
thus contributing to loss of fat mass. It is uncertain whether

GH affects lipid deposition in muscle and liver, but one study
in healthy subjects has recorded increased intramyocellular
lipid disposition after 8-d GH treatment (36). There is no
evidence that GH acutely affects triglyceride synthesis rates
(36). The lipolytic effects are at least partly mediated via the
hormone-sensitive lipase (HSL) (75), and in accordance with
this administration of acipimox, a nicotinic derivative that
blocks the actions of HSL has been shown to suppress the
lipolytic effects of GH in humans (76–79). In addition, in vitro
data suggest that GH directly stimulates FFA oxidation in
human fibroblasts (80), and several studies also demonstrate
that GH suppresses the lipoprotein lipase (LPL) activity in
human adipose tissue (81–83) (Fig. 8). Finally, there is in vitro
and in vivo evidence to suggest that GH, probably via IGF-I,
inhibits the conversion of cortisone to cortisol in human
adipose tissue from the abdomen by inhibiting the expres-
sion and activity of 11�-hydroxysteroid dehydrogenase 1
(84, 85). Several animal and human studies have shown
that reduced 11�-hydroxysteroid dehydrogenase 1 expres-
sion and activity, and thus low cortisol levels, protect

GHR-GH-GHR

JAK2

STAT5b

SOCS IGF-I

PI3-kinase PKB/Akt

MAPK
ERK1/2

Src

JNK

FIG. 6. Schematic and simplified depiction of alleged GH signaling
proteins, which so far have been investigated in human muscle and
adipose tissue. The solid lines and boxes indicate pathways that have
been shown to be activated by GH; the hatched lines and boxes rep-
resent signaling proteins where activation by GH so far has not been
documented. Src, Tyrosine kinase src; JNK, Jun N-terminal kinase.

FIG. 5. A, The effects of GH (E) vs. saline infusions (F) on circulating FFA levels (top) and GIR (bottom) during a euglycemic clamp. The arrows
indicate the time points for muscle biopsies. B, IRS-1-associated PI 3-kinase (top) and Akt/PKB activity (bottom) in muscle at baseline (open
bars) and under insulin stimulation during GH (gray bars) and saline infusions (black bars). Values are means � SE. IRS-1-associated PI 3-kinase
activity is expressed in arbitrary units (AU), and Akt/PKB activity is expressed as picomoles incorporated ATP � mg protein�1 � min�1. [Adapted
from Ref. 52 with permission from The American Physiological Society].
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against central obesity via mechanisms that may involve
reduced LPL activity, reduced differentiation of preadi-
pocytes to mature adipocytes, and induction of a more
favorable profile of inflammatory adipokines. To what
degree this intriguing effect of IGF-I contributes to the
lipolytic and insulin-antagonistic effects of GH remains,
however, uncertain.

Thus, the primary effect of GH in the basal state is to
promote lipid mobilization and oxidation. As pointed out by
Rabinowitz and Zierler (7) these actions may be viewed as a
means of switching substrate metabolism from glucose and
protein utilization to lipid oxidation.

2. Glucose metabolism. “In human studies, anabolic amounts
of human GH have been found to cause no increase in blood
sugar in normal subjects but may decrease the sensitivity to
injected insulin” (274).

When a physiological dose of GH (100 �g/h) is infused to
healthy postabsorptive subjects for 4 h, an abrupt early 40%
decrease in glucose uptake of the forearm muscles is re-
corded, together with a more delayed 50% decrease in glu-
cose oxidation and a proportionate increase in nonoxidative
glucose utilization, whereas total glucose turnover remain
unaltered (57). Similar observations have emerged from

studies using discrete GH pulses, i.e., acute inhibition of
muscle glucose uptake and subsequent stimulation of lipid
oxidation and suppression of glucose oxidation (35, 55, 56,
58). These data are in line with the original studies that
reported a rapid and robust greater than 50% decrease in
forearm glucose uptake after local GH exposure (33, 34).

The rapid initial decrease in muscle glucose uptake may
either be a direct effect of GH or secondary to local im
augmentation of lipid utilization (86). In this context, it is
noteworthy that lipids in the basal state constitute the major
fuel substrate for muscle (87), and that basal muscle uptake
of glucose accounts for only 15–20% of total glucose turnover
(57). Rabinowitz et al. (33) noted an acute decrease in the
respiratory exchange ratio across the GH-perfused forearm,
indicating increased lipid oxidation, which could directly
inhibit glucose utilization. It is also noteworthy that GH
signaling in muscle and fat tissues is detectable 30 min after
a GH pulse (46).

Acknowledging that GH decreases glucose oxidation and
muscle glucose uptake in the presence of unchanged endog-
enous glucose production and plasma glucose concentra-
tions implies that GH must promote nonoxidative glucose
utilization in some nonmuscle compartment of the body.

FIG. 7. The effects of a physiological iv GH bolus injection (F) vs. saline (E) in healthy subjects after an overnight fast. A, Circulating
concentrations of GH (top), insulin (middle), and glucagon (bottom). B, Interstitial levels of glycerol in abdominal (top) and femoral (bottom)
fat assessed by microdialysis. [Adapted from Ref. 56 with permission from The American Physiological Society].
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Neither the tissues nor the biochemical “destinations” for
this surplus glucose flux are known. Stimulated lipogenesis
in adipose tissue or liver is an unlikely candidate because
there is no evidence of any such effects and because ongoing
lipogenesis would increase the respiratory exchange ratio,
whereas the opposite is recorded after GH exposure (88).
Alternatively, GH may increase gluconeogenesis and glu-
cose cycling in, e.g., splanchnic tissues/liver or kidney. Large
doses of GH have been reported to decrease net postabsorp-
tive splanchnic glucose output acutely, compatible with in-
creased glucose uptake (89), and in vitro experiments have
shown increased gluconeogenesis from either alanine, or
more likely, lactate in canine kidney cortex incubated with
GH (90). The kidney is an important contributor to endog-
enous glucose production, which accounts for close to 50%
during fasting (91, 92). In further favor of this notion, studies
in acromegalic patients have revealed a 50% increase in
glucose/glucose-6-phosphate cycling, presumably in liver or
kidney (91–93); this increase could explain the major part of
the increased glucose turnover recorded in these patients.
Besides, Butler et al. (94) have reported that overnight ex-
posure to high levels of GH in normal man stimulated glu-
coneogenesis, as judged by the incorporation of labeled car-
bon dioxide into glucose, and dogs treated with high GH
doses for several days presented more than a doubling of
liver glycogen content—from 5 to 11 g/100 g of liver (95). A
more recent study of GH treatment in HIV-infected patients
showed that gluconeogenesis assessed by mass isotopomer
distribution analysis increased, and hepatic de novo lipogen-
esis decreased after months of treatment (96). It is likely that
increased FFA levels contribute to this putative stimulation
of gluconeogenesis (97). On the whole, there is circumstantial
evidence that GH increases gluconeogenesis, probably lac-
tate-dependently, but there is a need of acute studies using,
e.g., the doubly labeled water method of Landau and col-
leagues (98).

3. Protein metabolism. “Since GH causes new protoplasm to be
formed, the effect on protein metabolism tends, rightly or not,
to be viewed as the prime function of the hormone” (274).

Data on the acute effects of GH on protein metabolism in
the basal state are not very consistent. Fryburg et al. (99, 100)
perfused GH locally in the brachial artery of the forearm and
demonstrated an increase in muscle protein synthesis, with-
out effects on muscle protein breakdown, when comparing
3-h values to 6-h values during 6 h of GH perfusion. In a
placebo-controlled study, Copeland and Nair (101) reported
an acute 20% decrease in whole body leucine oxidation and
a borderline increase in nonoxidative leucine disposal (pro-
tein synthesis), a reduced leg leucine balance together with
relatively lower muscle protein breakdown rates for phe-
nylalanine (P � 0.05) and leucine (P � 0.09). Another study
did not detect any effects of acute GH withdrawal on whole
body or forearm muscle phenylalanine kinetics in GH-defi-
cient (GHD) adults (GHDA) (102), whereas Fryburg and
Barrett (103) reported decreased whole body leucine oxida-
tion, unaltered whole body leucine proteolysis and protein
synthesis, and increased muscle protein synthesis after acute
GH exposure in healthy humans. In general, circulating
amino acid concentrations do not consistently change after
acute GH administration.

As regards more prolonged effects, a study assessing the
impact of GH on protein metabolism postabsorptively has
shown that high doses of GH (0.1 mg/kg � d) for 7 d increases
both leucine protein synthesis and leucine oxidation at the
whole body level (104). These observations were confirmed
by Yarasheski et al. (105), who failed to detect any effect on
fractional muscle protein synthesis after 14 wk of GH treat-
ment. In addition, it has been reported that 6 wk of high-dose
GH treatment to malnourished hemodialysis patients stim-
ulated muscle protein synthesis without any effects on mus-
cle protein degradation (106). Some studies have, however,
not been able to find any effects of prolonged GH exposure
on whole body protein turnover or albumin synthesis (103,
107). A study of protein turnover in GHDA has demon-
strated reduced rates of protein synthesis and breakdown
and subsequent normal net protein loss compared with nor-
mal controls (108), in line with earlier observations of the
effect of chronic GH deficiency on protein metabolism (109).
It should be noted that most studies assessing the protein
metabolic effects of prolonged GH exposure have used rel-
atively high GH doses and invariably have affected insulin,
IGF-I, and FFA levels, which together with changes in body
composition have independent effects on substrate metab-
olism, discussed below.

In addition, experiments in hypophysectomized rats show
that GH acts on the liver to decrease urea synthesis and, in
parallel, increase glutamine release, thereby diminishing he-
patorenal clearance of the circulating nitrogen pool (110). In
the postabsorptive state, Wolthers et al. (111, 112) recorded
unchanged rates of urea synthesis during short-term GH
exposure and a decrease with more prolonged administra-
tion in an experimental model that provided constant blood
levels of and hepatic exposure to circulating amino acids.
This suggests that the anabolic effect of GH on whole body
protein metabolism in normal subjects involves both periph-
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eral protein synthesis and degradation as well as a specific
reduction of hepatic urea nitrogen synthesis.

On the whole, the acute effects of GH on protein metab-
olism in the basal state are not straightforward and perhaps
of minor biological significance, and studies of the effects of
GH on protein metabolism in stress states (e.g., exercise and
fasting) and pathological states (acromegaly and GH defi-
ciency) are probably more relevant and rewarding. The ma-
jority of studies suggest modest anabolic actions that may
include increased protein synthesis and decreased break-
down at the whole body level and in muscle together with
decreased amino acid degradation/oxidation and decreased
hepatic urea formation. With more prolonged GH exposure
and ensuing elevated levels of insulin, IGF-I, and FFA and
increased LBM, the protein anabolic effects become more
consistent.

4. Energy expenditure. Several lines of evidence suggest that
high GH levels stimulate resting energy expenditure (REE)
independent of changes in LBM (113, 114). An increase in
REE has been observed 5 h after GH infusion (compared with
saline) in normal subjects during a concomitant euglycemic
clamp (115). Comparable rapid-onset calorigenic effects of
GH have been recorded in GHD patients (116, 117). The
underlying mechanisms are not fully clarified, but it is note-
worthy that IGF-I administration does not to the same extent
increase REE (118), which could relate to its suppressive
effect on insulin secretion.

GH stimulates the peripheral conversion of T4 to T3 (119,
120), but experimental data indicate that the ensuing ap-
proximately 10% increase in T3 levels is insufficient to ac-
count for the GH-induced 10–20% increase in REE (114). A
primary stimulatory effect of GH infusion on key mitochon-
drial enzymes involved in biological oxidation was recently
recorded in muscle biopsies from healthy subjects, although
that particular study did not observe an increase in REE (121).
An increase in the expression of mRNA for uncoupling pro-
tein (UCP) 3 in skeletal muscle, and fat has been reported
after 4-month GH substitution in hypopituitary patients
(122); the UCPs, which are assumed to be under sympathoa-
drenal control, act by uncoupling oxidative phosphorylation
resulting in heat production without ATP generation. But it
remains to be verified whether GH also influences the ac-
tivity of UCPs. GH increases resting cardiac output (123) and
blood flow in several organs, including skeletal muscle and
kidneys (124, 125), all of which are likely to elevate REE.

B. Fasting, exercise, and stress

As outlined above GH secretion is amplified during fast-
ing, exercise, and stress, and these catabolic conditions may
be regarded as the natural domains for GH, in which the
body benefits from the impact of GH on substrate metabo-
lism. These conditions are all characterized by progressive
fuel depletion, because of either reduced supply or increased
demand.

1. Fasting. “However, one of the most salient characteristics
of pituitary insufficiency is the tendency to hypoglycemia
during fasting, which becomes manifest after a few hours”
[Bernardo A. Houssay, 1936 (28)].

Classic observations by Cahill (126) have suggested that a
normally proportioned 70-kg man stores 300–400 g glycogen
(1500 cal), 6–7 kg mobilizable muscle protein (25,000 cal), and
10–15 kg triacylglycerol in adipose tissue (125,000 cal). With
sustained fasting, the degree of glucose oxidation becomes
rate limiting for protein degradation because amino acids are
major substrates for gluconeogenesis. Therefore, mainte-
nance of metabolic homeostasis becomes increasingly de-
pendent on mobilization and utilization of FFA and ketone
bodies (92, 127–129), and GH plays a central role in this
process.

During fasting, GH is the only anabolic hormone to in-
crease, whereas insulin and IGF-I levels decrease, and levels
of catabolic hormones such as glucagons, epinephrine, and
cortisol increase (130). Many studies using high-dose GH
administration have shown that GH reduces serum urea
concentrations and urea excretion (29, 30, 131), including
conditions of dietary restriction (132) or a hyponitrogenous
diet (133). The magnitude of this response is quite remark-
able, and more recent studies aiming at physiologically ap-
propriate GH levels during short-term fasting have reported
50% increases in urea-nitrogen excretion in normal subjects
during GH suppression with somatostatin and in GHD sub-
jects off GH therapy (134, 135) together with a 30–35% in-
crease in [13C]urea production rate (136) (Fig. 9). Muscle
protein breakdown increased by 25% among participants
fasted without GH, and forearm phenylalanine release in-
creased by 40%. The increase in whole-body protein loss
secondary to GH deprivation was accounted for by a net
reduction in protein synthesis. Furthermore, a significant
decrease in branched-chain amino acid levels, consistent
with decreased proteolysis, was seen during fasting with GH
substitution (134, 136).

Studies in obese subjects have generated similar results.
Obesity is associated with suppressed levels of circulating
GH compared with normal-weight subjects (137). In the
treatment of obesity with caloric restriction, protein loss pre-
sents a major therapeutic obstacle, and the concurrence of
increased lipolysis and protein conservation observed dur-
ing GH administration could make adjunct GH therapy a
rational approach. The metabolic response to GH during
prolonged fasting in obese subjects was first studied more
than 30 yr ago by Felig et al. (138), who showed that high
doses of GH induced a significant reduction in urinary urea
excretion. It has also been shown that GH treatment in com-
bination with a hypocaloric diet in 20 obese subjects resulted
in a significantly more positive nitrogen balance, although
the effect faded after 4–5 wk of GH treatment (139, 140).
Finally, it has been reported that GH administration pre-
serves LBM and protein stores and leads to a relative
decrease of phenylalanine-to-tyrosine degradation in
obese women during well-defined hypocaloric regimens
for 4 wk (141).

Another central feature of GH during fasting is stimulation
of lipolysis, although this effect may be partially masked by
insulin. When insulin release is controlled with somatostatin,
exogenous GH increases FFA levels during fasting (135), and
palmitate concentrations and fluxes increase by approxi-
mately 50% (136). More importantly, when lipolysis is
blocked with acipimox during fasting, urinary urea excretion
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and muscle protein breakdown increase by approximately
50%, and the ability of GH to decrease urea formation and
muscle protein breakdown is abrogated (142). These defects
are to a large degree restored when intralipid is infused to
raise FFA levels. As would be predicted, GH-induced lipol-
ysis during fasting also leads to insulin resistance (77). On the
other hand, Sakharova et al. (143) have shown recently that
partial suppression of GH secretion with a GHRH receptor
antagonist significantly reduces lipolysis but leaves glucose
and protein metabolism unaffected during fasting.

In conclusion, fasting unmasks the marked ability of GH
to preserve protein. When GH is lacking, protein loss and
urea production rates increase by 50%. This is to a large
extent due to a similar increase in muscle protein breakdown
and appears to depend on the protein sparing effects of
FFA and other lipid fuels. The concept of a central role of
lipolysis and lipid intermediates is supported by a number
of classic studies reporting protein conserving actions of FFA
and ketone bodies (144–146).

2. Exercise. The role of GH and IGF-I in exercise and sport has
been extensively reviewed recently (147, 148), and this re-
view will not cover the potential effects of GH to improve
athletic performance. Interestingly, it appears that exercise-
induced GH release may depend upon increases in hypo-
thalamic temperature (149, 150), and vice versa, that intact

GH secretion/hypothalamopituitary function seems to
be a prerequisite for appropriate thermoregulation during
exercise (151).

Only a few studies have addressed the acute physiological
role of GH during exercise. When the normal physiological
GH surge is mimicked in GHD subjects during 45 min at
moderate intensity exercise, FFA fluxes during and after
exercise increase, whereas glucose and amino acid metabo-
lism are unaltered (152). There is also a significant correlation
between the peak GH response to exercise and subsequent
indices of lipolysis (153). Notably, recent studies in human
subjects have recorded increased mitochondrial oxidative
capacity and expression of mRNAs that encode mitochon-
drial proteins after GH exposure alone and in combination
with exercise (121, 154).

The possible metabolic significance of repeated or pro-
longed GH bursts during repetitive exercise or during more
prolonged and exhaustive exercise is largely unknown. Ad-
ministration of very high doses of GH for 4 wk to trained
athletes reduced leucine oxidation and increased leucine pro-
tein synthesis and FFA levels and lipolysis in the basal state
and in the periexercise period (155, 156). Other studies have
shown that GH treatment increases lipolysis and FFA avail-
ability before and during exercise, but not necessarily FFA
oxidation during exercise (157, 158). Studies in GHD subjects

FIG. 9. Effects of continued vs. discontinued GH administration during 42.5 h of fasting in GHDA. Black bars, With GH; white bars, without
GH. M-value is the amount of glucose infused during a euglycemic clamp performed during the last 2.5 h of the fast. *, P � 0.05. [Adapted from
Ref. 136 with permission from The American Physiological Society].
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have also shown that withdrawal of GH for 3 months reduces
glycerol and FFA (palmitate) release and utilization during
exercise (159).

Thus, the major metabolic effect of GH during moderate
exercise appears to be stimulation of lipolysis, whereas pro-
tein and glucose metabolism remain unaffected. When GH is
administered in high doses for a long time, lipolysis prevails
and protein oxidation decreases. Again, this is partially con-
founded by high levels of insulin, FFA, and IGF-I and
changes in body composition and there is a need for studies
addressing the more direct effects of GH during more
prolonged exhaustive and/or repetitive exercise of high
calorie-consuming caliber, in particular as regards protein
metabolism.

3. Stress and critical illness. In the acute phase of severe critical
illness, GH secretion is amplified, whereas protracted (less
severe) critical illness suppresses GH release (160, 161).
Knowledge about the role of GH under these different cir-
cumstances is very limited. A number of protocols have
assessed the effects of adjuvant GH therapy during a variety
of acute and chronic disease states, and in general these
studies show that GH induces an acromegaly-like state char-
acterized by 1) increased lipolysis and elevated FFA levels;
2) insulin resistance with elevated endogenous glucose pro-
duction and decreased peripheral (muscle) glucose uptake;
3) protein preservation due to decreased oxidation; 4) ele-
vated levels of IGF-I and insulin; and 5) increased LBM and
decreased fat mass (162–166). When GH is administered to
patients with HIV, an increase in muscle protein synthesis is
observed, whereas muscle protein synthesis is decreased in
patients with HIV-associated wasting, and this condition is
an FDA-approved indication for GH treatment (167). It is of
particular interest that GH reduces visceral and sc fat mass,
whereas intermuscular fat deposition increases (163), al-
though the mechanisms remain elusive.

When assessing all the studies using GH therapy in cat-
abolic illness, it should be noted that the metabolic outcome
depends heavily on the timing between GH administration
and the subsequent metabolic investigations. When GH lev-
els are high, the acute metabolic effects of GH will prevail,
followed by waning of these direct GH effects and increasing
effects of high IGF-I levels and increased LBM.

Insulin resistance, lipotoxicity, and glucose toxicity raise
particular concerns as regards both acute mortality and long-
term cardiovascular disease. In the late 1990s, a large mul-
ticenter study including more than 500 patients in the acute
phase of severe critical illness reported that high-dose GH
treatment doubled mortality from 20 to 40% (168). The det-
rimental outcome was associated with significant elevations
in blood glucose levels despite more than a doubling of
insulin administration in the GH-treated group. Whether the
dramatic increase in mortality related to insulin resistance
and metabolic disarray, as suggested by the subsequent stud-
ies by van den Berghe et al. (169), showing beneficial effects
of targeted insulin therapy, or perhaps also involved poten-
tial proinflammatory effects of GH remains uncertain.

As indicated above, in this section, there is a lack of con-
trolled studies addressing the putative effects of “physio-
logical” GH exposure during the chronic phase of critical

illness. A large number of small and often uncontrolled stud-
ies have confirmed the ability of GH to conserve protein and
LBM during catabolic illness. A large multicenter trial with
GH treatment in adult patients with chronic renal insuffi-
ciency, with reduced mortality as a primary end point, is
currently in progress. The fatal outcome of GH administra-
tion in patients with severe and acute critical illness empha-
sizes that any future studies with GH in catabolic patients
must be very carefully targeted and rigorously monitored.

V. Insulin Sensitivity and Diabetes

“It is tempting to seek a unified explanation in which the
hyperglycemia as well as ketosis is related to the increased
mobilization and use of fat that occurs with GH” (274).

Acute and chronic GH exposure induces insulin resistance
in terms of increased endogenous glucose production and
decreased peripheral glucose disposal in muscle (166, 170).
These effects appear to be largely secondary to stimulation
of lipolysis and subsequent glucose-fatty acid substrate com-
petition (76, 79, 171). The existence of the glucose-fatty acid
cycle was proposed in 1963 by Randle et al. (6), who sug-
gested that increased FFA oxidation inhibits insulin-stim-
ulated glucose uptake in muscle because of intracellular
accumulation of citrate and glucose-6-phosphate. This sub-
strate competition hypothesis was later expanded by Shul-
man and colleagues (172), who —rather than an increase—
showed a decrease in intracellular glucose and glucose-6-
phosphate after FFA exposure and suggested that
accumulation of lipid metabolites (e.g., fatty acyl CoA and
diacylglycerol) initiates a cascade, which inhibits PI 3-kinase
activity and translocation of the GLUT-4 glucose transporter
to the cell surface (173-175). Not all studies have supported
this concept, and there is no evidence in humans that the
insulin antagonistic actions of GH involve inhibition of the
PI 3-kinase pathway (52). Furthermore, it is also likely that
GH possesses FFA-independent actions to induce insulin
sensitivity because acute GH exposure generates insulin re-
sistance before elevations of FFA in the circulation (170).

Patients with type 1 diabetes exhibit elevated and fluctu-
ating GH levels, in particular when poorly controlled (176);
it has been estimated that poorly controlled patients [glyco-
sylated hemoglobin (HbA1c) �12%] are characterized by 2-
to 3-fold elevated GH levels with a secretory pattern similar
to fasting in normal subjects (177). At the same time, serum
IGF-I levels are reduced in poorly controlled patients (178),
which may be caused by a combination of a negative nitrogen
balance and low portal insulin levels (179, 180). It is, in turn,
likely that the low IGF-I levels cause or contribute to the
increased GH secretion via classic feedback mechanisms.

Hypoglycemia remains an inevitable counterpart to treat-
ment of diabetes, and intact GH secretion is important in
combating hypoglycemia (181, 182). This is particularly so in
patients with autonomic failure and inadequate glucagon
and epinephrine responses to hypoglycemia (183). In pa-
tients with appropriately controlled diabetes, GH may be
considered as a physiological modulator of metabolic ho-
meostasis (184). These findings, which are very similar to
observations in normal man, suggest that in well-insulinized
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diabetic subjects, modest amounts of GH may serve as a
beneficial metabolic regulator working to preserve carbohy-
drate and protein at the cost of lipid consumption. In further
support of this, low-dose GH replacement therapy for 6
months in hypopituitary patients with type 1 diabetes de-
creases asymptomatic hypoglycemic attacks in the presence
of increased (normalized) insulin dosage requirements and
unaltered glycemic control (185).

It is, however, equally well documented that GH hyper-
secretion worsens metabolic control in type 1 diabetes (186).
In these experiments, it was clearly shown that administra-
tion of hourly 100-�g GH pulses after a latency of several
hours induced dramatic 100% increases in circulating glu-
cose values, together with marked increments in circulating
lipid fuels.

Lowering of GH levels, in turn, by means of infusion of
IGF-I in combination with IGFBP-3 for 2 wk in patients with
type 1 diabetes in average control (mean HbA1c, 8.6%) has
been shown to reduce blood glucose levels as well as insulin
requirements without causing hypoglycemia (187). Whether
circulating free IGF-I levels in the physiological range also
improves insulin action or sensitivity via GH-independent
mechanisms remains uncertain.

The effects of GH on insulin sensitivity in healthy subjects
have been assessed in some detail. Reports from the early
1980s repeatedly demonstrated that continuous infusion of
1.5-mg GH impaired both hepatic and peripheral insulin
sensitivity of normal man after 12 h (188, 189). A subsequent
study using smaller doses of GH and insulin showed that: 1)
GH impairs hepatic and peripheral insulin sensitivity after
approximately 2 h; 2) the impairment of peripheral insulin
sensitivity largely resides in muscle; and 3) GH has the po-
tency to offset the antilipolytic properties of light hyperin-
sulinemia (170). There is also evidence to suggest that GH
diminishes both insulin- and glucose-dependent glucose dis-
posal (190). Fowelin et al. (191) in a thorough design observed
precipitation of insulin resistance after 2 h of GH exposure,
maximal effect on glucose metabolism after 5–6 h, and wan-
ing of this effect after 6–7 h in a dose-dependent manner after
semipulsatile exposure to GH doses between 0.2 and 0.5
mg in healthy subjects. It has been reported that GH ex-
posure blunts the activity of glycogen synthase in striated
muscle (115).

In the course of diabetic ketoacidosis, circulating GH con-
centrations are inappropriately elevated (192), which wors-
ens the pronounced insulin resistance of this state and may
aggravate the life-threatening ketosis (193).

Nocturnal surges of GH have been implicated in the patho-
genesis of the so called “dawn phenomenon,” i.e., an increase
in the insulin requirements in the early morning hours (194,
195), although the concept has been challenged (196). This
challenge has received support from a study failing to detect
any effect of nocturnal GH surges on morning insulin sen-
sitivity (197). Conversely, Van Cauter et al. (198) have re-
ported that sleep-induced increments in glucose concentra-
tions correlated strongly with the magnitude of GH
secretion, in particular when normal nocturnal sleep and
circadian rhythmicity were preserved. If indeed involved,
GH therefore seems to act as a permissive factor rather than
a prime generator of the dawn phenomenon; as pointed out

by Clore, Blackard, and co-workers (196, 199), it is credible
that increased early morning insulin requirements may pre-
dominantly be explained by transient sleep-correlated dec-
rements in glucose appearance and disposal, as well as di-
minished insulin demands, and a subsequent normalization
of these parameters at arousal waning of insulin action from
precedent meals may also be involved.

Adding to the lack of clarity in the field, it has been
reported that administration of very low GH doses may
actually improve insulin sensitivity in GHD subjects (200).
This could relate to the fact that when low doses of GH
are administered long before metabolic assessment, the
direct insulin antagonistic actions of GH have waned
and the insulin agonistic effects of IGF-I and increased
LBM prevail.

On the whole, it is beyond doubt that GH may contribute
significantly to the overall insulin resistance in type 1 dia-
betes and also acts as an initiator of the vicious circles leading
to acute metabolic derangement. It is also likely that GH
plays a permissive role in the pathogenesis of the dawn
phenomenon. As in other stress states, GH plays a beneficial
role in the protection against hypoglycemia.

VI. GH-Deficient Patients

A. Untreated GH deficiency

Fasting hypoglycemia is a frequent occurrence in GH-
naive children with isolated GH deficiency (201). The prone-
ness to hypoglycemia is related to young age (�4 yr) and a
lean body composition. Moreover, GHD children with symp-
tomatic hypoglycemia exhibit lower elevations in both glu-
cose and insulin during exposure to oral glucose and iv
arginine, respectively. Finally, GHD children are hyperre-
sponsive to insulin, including a delayed recovery from hy-
poglycemia in response to iv insulin. Based on assessment of
glucose turnover rates, fasting hypoglycemia in GHD chil-
dren is attributable to decreased hepatic glucose production
(HGP) rather than an increase in peripheral glucose uptake
(202). It was therefore somewhat unexpected when Beshyah
et al. (203) observed an increased prevalence of abnormal/
impaired glucose tolerance despite compensatory hyperin-
sulinemia among GHDA compared with healthy subjects.
Determinants of abnormal/impaired glucose tolerance in-
cluded old age, female sex, and obesity. Johansson et al. (204)
observed distinctly impaired insulin sensitivity (�50%) in 15
adult patients by means of the glucose clamp technique also
after correction for differences in LBM. In both studies, fast-
ing levels of plasma glucose and insulin were comparable
between patients and controls. Similar results have been
obtained by Hew et al. (205), who also documented decreased
insulin-stimulated glycogen synthase activity in skeletal
muscle. In the latter study, duration of GH deficiency was the
single most important predictor of insulin resistance (200).
The mechanisms underlying the impairment of insulin sen-
sitivity in long-standing untreated GHDA are unclear, but
one plausible candidate is increased FFA flux from visceral
fat because visceral adiposity is a hallmark of adult GH
deficiency. In this regard, it is noteworthy that a normal body
mass index does not exclude visceral obesity (206). It is also
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likely that additional pituitary deficits and/or lifestyle fac-
tors (e.g., a more sedentary lifestyle) contribute to insulin
resistance in these patients.

B. Effects of GH replacement

In a study of adolescent GHD patients on GH replacement
therapy, the impact of replacing one daily (evening) injection
with a 10-h iv infusion of either saline or GH in a low dose
(35 �g/h), starting the evening before the study, was inves-
tigated (116). Continued GH infusion was associated with
reduced basal rates of glucose oxidation and reciprocal
changes in lipid oxidation. Insulin sensitivity was increased
relative to control subjects during saline infusion and became
reduced during GH infusion to a level comparable to the
control group (Fig. 10). Fowelin et al. (207) studied insulin
sensitivity and glucose metabolism in GHDA in a double-
blind, placebo-controlled crossover trial including assess-
ments at baseline and after 6 and 26 wk of GH treatment,
respectively. Fasting plasma levels of glucose and insulin
increased after 6 wk of GH but returned toward baseline

values after 26 wk. A significant 35% decrease in the glucose
infusion rate (GIR) during the clamp was recorded after 6-wk
GH treatment. After 26 wk, GIR was decreased with 25%, a
difference no longer significantly different. In an open de-
sign, O’Neal et al. (208) studied 10 patients with adult-onset
disease after 1 wk and 3 months of GH replacement (�1.2
mg/d), respectively. Based on frequent sampling of arteri-
alized blood for 180 min after an iv glucose load, several
indices of insulin kinetics and sensitivity were calculated.
Fasting plasma levels of glucose increased after 1 wk but
normalized after 3 months. This was associated with sus-
tained elevations in fasting insulin levels and unaltered
HbA1c levels. In addition, insulin sensitivity decreased sig-
nificantly in concomitance with a reciprocal rise in FFA levels
after 1 wk of GH. By 3 months, most parameters had returned
to pretreatment levels, apart from modest hyperinsulinemia.
Of note, the patients at baseline were insulin resistant com-
pared with a healthy, normal-weight reference group (208).
In a placebo-controlled study using a similar GH dose in
adult-onset GHDA, 4-month GH treatment was associated
with sustained insulin resistance calculated from an iv glu-
cose tolerance test (209). Moreover, the so-called disposition
index, which is the product of the first phase insulin response
and insulin sensitivity, was reduced after GH treatment,
indicating that the insulin response was not sufficiently in-
creased to compensate for the reduction in insulin sensitivity
(209). This contrasts with O’Neal et al. (208), who recorded an
unchanged disposition index after 3 months of GH. A num-
ber of studies have assessed insulin sensitivity or glucose
tolerance before and after 6 months of GH replacement in a
parallel, placebo-controlled design followed by an open
phase of additional GH treatment for up to 12 months (210–
212). An increase in fasting insulin levels was recorded after
6 months in two studies (210, 212), which in one case was
associated with a small increase in fasting plasma glucose
levels (212). Beshyah et al. (210) documented elevated glucose
and insulin levels during an oral glucose tolerance test
(OGTT) when comparing baseline data with those after 6
months of GH, whereas Weaver et al. (212) used homeostatic
model assessment and an iv glucose infusion to demonstrate
impaired insulin sensitivity and an increase in first phase
insulin secretion. Hwu et al. (211), who used a so-called
modified insulin suppression test to assess insulin sensitiv-
ity, observed that GHD patients exhibited insulin resistance
at baseline compared with a healthy reference group,
whereas fasting plasma glucose levels remained stable (211).
During prolonged open GH treatment, the impairment of
insulin sensitivity and glucose tolerance prevailed (210, 212),
with the exception of the study by Hwu et al. (211) in which
insulin sensitivity improved and became normalized. In a
open design including 10 young patients with childhood-
onset GHD, 9-month GH replacement in a final daily dose of
approximately 0.5 mg, glucose homeostasis assessed by fast-
ing glucose and insulin levels, an OGTT, and an iv glucose
tolerance test remained unchanged and apparently within
the range of normality (213). Christopher et al. (214) reported
sustained peripheral—but not hepatic—insulin resistance in
11 patients treated with GH (�0.7 mg/d) for 24 months in an
open design. Based on measurements of total glucose levels
and glucose 6-phosphate content in muscle biopsies, the au-

FIG. 10. Effects of continuation vs. discontinuation of evening GH
replacement in adolescent GHD patients on basal rates of lipid oxi-
dation (bottom left), protein oxidation (top left), and hepatic and pe-
ripheral insulin sensitivity (right). Lipid oxidation estimated by in-
direct calorimetry; protein oxidation estimated from urinary urea
excretion; insulin sensitivity estimated by a euglycemic clamp in
combination with a glucose tracer infusion. A group of healthy, age-
and sex-matched subjects were studied once without treatment. EE,
Energy expenditure; EGP, endogenous glucose production. [Adapted
from Ref. 116 with permission from The Endocrine Society].
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thors hypothesized that a prime defect in glucose disposal at
the level of glucose phosphorylation exists in GHD patients
both before and after GH therapy (214). Impairment of glu-
cose tolerance and moderate insulin resistance in combina-
tion with increased secretion and clearance of insulin were
also recorded after 30 months of GH substitution (�0.5
mg/d) in an open trial (215). Of note, the insulin disposition
index was not reduced after GH treatment for 30 months,
which contrasts with the short-term study from the same
group (209).

Data from two observational studies lasting 4 and 5 yr
reported normalization of glucose tolerance (216) and insulin
sensitivity (217), respectively. Euglycemic glucose clamps
in combination with glucose tracer infusions were performed
in 11 GHDA at baseline and subsequently after 6 months and
1, 2, and 7 yr of GH replacement (218). The daily GH dose
was gradually lowered from approximately 1 mg to approx-
imately 0.6 mg during the study period. Fasting blood glu-
cose levels were transiently increased during the first year of
treatment, whereas fasting (morning) levels of insulin and
FFA remained completely stable (218). Basal hepatic glucose
output remained increased after GH replacement, whereas
insulin sensitivity (assessed by a glucose clamp) decreased
significantly during the first year with a nadir at 6 months.
After 7 yr, insulin sensitivity was comparable to baseline
levels (218). Compared with healthy individuals, insulin sen-
sitivity was lower in the patients both at baseline and at the
end of the study period, with a trend (P � 0.06) toward a
relative improvement in insulin sensitivity after 7 yr (218). A
subsequent, quasi-controlled study of 10 yr GH replacement
in adult-onset patients did not detect changes in fasting levels
of glucose, insulin, or C-peptide (219). There is no evidence
to suggest that GH replacement therapy is associated with
either increased urinary albumin excretion or retinal changes
(220, 221).

The impact of discontinuing GH replacement after com-
pletion of longitudinal growth on body composition and

glucose homeostasis has been addressed in a number of trials
(222–224). Johannsson et al. (222) followed 40 adolescent pa-
tients for 2 yr after discontinuation of GH replacement, com-
pared with 16 closely matched healthy controls. Based on
renewed testing, the patients were classified as either se-
verely GHD (n � 21) or GH sufficient (n � 19). Fasting blood
glucose levels were in the normal range and did not change
in either group during the 2 yr, whereas the levels of HbA1c
and fasting insulin decreased slightly, but significantly, in
both patient groups (222). Norrelund et al. (223) evaluated
insulin sensitivity (euglycemic glucose clamp) and substrate
metabolism in 18 adolescent patients with reconfirmed GH
deficiency in a placebo-controlled, parallel study. The pa-
tients were randomized to either continued GH replacement
or placebo for 12 months, followed by 12 months of open-
labeled GH therapy in both groups. In the group that con-
tinued GH therapy, no significant changes were recorded in
insulin sensitivity. By contrast, placebo treatment was ac-
companied by increased insulin sensitivity despite a con-
comitant increase in fat mass (Fig. 11). After resumption of
GH treatment in that group, fat mass decreased together with
insulin sensitivity (223). In an open design, Carroll et al. (224)
followed 24 adolescents with reconfirmed GH deficiency for
12 months, during which 12 patients remained on GH and 12
patients ceased GH replacement. Cessation of GH resulted in
increased insulin sensitivity, but no significant change was
seen during 12 months of GH continuation (224).

The ability of GH replacement to increase LBM is well
documented (225, 226), whereas relatively few studies have
investigated the underlying changes in protein metabolism.
The rates of whole body proteolysis, oxidation, and synthesis
by means of leucine kinetics have been assessed after 1, 2, 8,
and 26 wk of low-dose GH replacement (�0.25–0.45 mg/d)
in adult patients (227–229). In all studies, the turnover rates
of leucine remained unchanged, whereas protein synthesis
increased at the expense of oxidation. Shi et al. (229) also
included measurements in the fed state during which the
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FIG. 11. Effects of discontinuation of GH replacement therapy for 1 yr in GHD patients in the transition phase from childhood to adulthood
on total body fat and insulin sensitivity. The patients were studied at baseline on GH therapy (black bar), after 1 yr of placebo treatment (gray
bar), and subsequently after 1 yr of resumed GH replacement (white bar). Total body fat was measured by dual-energy x-ray absorptiometry,
and insulin sensitivity was measured by a euglycemic clamp. [Adapted from Ref. 223 with permission from The Endocrine Society].
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protein anabolic effects recorded after 2 wk were not main-
tained after 6 months. In two other studies of protein ki-
netics in the fed state, improved protein balances were
observed after 1 and 2 months of GH replacement, re-
spectively (230, 231). In support of the significance of
substrate availability for the protein-conserving effects of
GH replacement, Norrelund et al. (134, 136) observed that
continued GH replacement during 40 h of fasting was
associated with increased protein synthesis (134) and re-
duced protein loss (136) in concomitance with increased
lipid oxidation.

C. Conclusion

Hallmarks of adult-onset GH deficiency include visceral
obesity, reduced LBM, and impaired physical fitness, which
may result from a combination of prolonged GH deficiency,
i.e., lack of the lipolytic and protein anabolic effects, and the
underlying disease and its treatment, all of which translates
into a state resembling the metabolic syndrome.

Impairment of glucose tolerance as well as insulin sensi-
tivity after GH substitution is almost unanimously reported
(Fig. 12), and these effects seem to correlate positively with
GH dosage and inversely with duration of therapy, although
the individual impact of the two factors is difficult to isolate
because the dosage in most studies is reduced with time.
Experimental studies suggest that FFA play a causal role in
the development of insulin resistance associated with GH
substitution by demonstrating that coadministration of acipi-
mox is able to restore insulin sensitivity (Fig. 13) (76). More
recently, it has also been recorded that administration of a
peroxisome-proliferator-activated receptor � agonist im-
proves insulin sensitivity in GH-treated GHDA (232). The
explanation why insulin sensitivity and glucose tolerance
tend to improve or normalize during more prolonged GH
substitution is not proven, but it is probably a combination
of a gradual reduction in GH dosage and favorable effects of
GH on body composition and physical fitness. The obser-
vation, however, that placebo-controlled discontinuation of
GH substitution for 1 yr improves insulin sensitivity despite
accumulation of fat mass underscores that induction of ab-
solute or relative insulin resistance is an inherent attribute of
conventional GH substitution.

Stimulation of lipolysis in concomitance with increased
protein synthesis and reduced protein oxidation is also
observed when GH is used as replacement therapy. The
observation that protein synthesis in the fed state reaches
a steady state after prolonged GH replacement is not sur-
prising, but it is noteworthy that the protein-conserving
actions seem to prevail in the fed state and become ac-
centuated during fasting where lipid oxidation is concom-
itantly stimulated.

VII. Acromegaly before and after Treatment

Hyperinsulinemia, impaired glucose tolerance, and overt
diabetes mellitus are common features of active acromegaly
(233, 234), and it is likely, albeit not formally demonstrated,
that these abnormalities contribute to the observed increase
in cardiovascular morbidity and mortality (235, 236). This
section will deal mainly with studies focusing on glucose
tolerance and insulin sensitivity in acromegaly before and
after surgery and medical treatment.

Elevated basal HGP, together with hepatic and peripheral
resistance to insulin stimulation and increased glucose cy-
cling, was recorded in a study employing infusion of differ-
ent glucose tracers in the basal state and during an OGTT
(93). Hansen et al. (237) established insulin dose-response
curves for stimulation of glucose uptake and suppression of
HGP by means of glucose tracer infusion in combination
with euglycemic glucose clamps with graded infusion rates
of insulin. Basal hyperinsulinemia but normal glucose levels
were recorded in the patients (n � 5) compared with control
subjects (n � 6) together with elevated HGP. The GIRs dur-
ing the clamps were significantly lower in the patients at any
insulin infusion rate, which was accompanied by elevated
HGP at the two lower insulin infusion rates (237). Insulin
resistance in skeletal muscle in terms of reduced nonoxida-
tive glucose disposal has also been documented with the
forearm technique in combination with indirect calorimetry
(238). Moller et al. (166) studied substrate metabolism and
insulin sensitivity in newly diagnosed acromegalic patients
before and several months after successful transsphenoidal
surgery. In the basal state, plasma levels of insulin and glu-
cose were significantly elevated before surgery and became

FIG. 12. Results of meta-analysis of GH effects on cardiovascular risk factors. [Reproduced from Ref. 226 with permission from The Endocrine
Society].
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normalized afterward. This was associated with reduced
forearm uptake of glucose and increased hepatic glucose
output. The GIR during a subsequent clamp was abnormally
low in active acromegaly and became normalized with sur-
gery (Fig. 14). Comparative results were reported in a study
involving 23 patients who underwent an OGTT before and
after transsphenoidal (239). Kasayama et al. (240) evaluated
glucose tolerance and insulin sensitivity (homeostatic model
assessment) in 24 acromegalic patients before and after sur-
gery compared with healthy control subjects. Insulin sensi-
tivity was decreased preoperatively and became normalized
in the patients, who were considered cured by surgery (46%)
(240). A relationship between biochemical markers of dis-
ease activity and glucose homeostasis after surgery is also
evident from other studies (235, 241). Serri et al. (241)
subdivided 53 of such patients. The criterion for “remis-
sion” was a normal IGF-I level for age, which was obtained
in 34 patients. A significantly higher prevalence of abnor-
mal glucose tolerance was observed in patients with
“active” disease (57.9 vs. 20.6%). A normal postoperative
serum IGF-I value, rather than GH status, was more pre-
dictive of insulin sensitivity in another study involving 66
patients (235). Insulin sensitivity among the 41 patients
with normal postoperative IGF-I levels with (n � 21) or
without (n � 20) normal nadir GH levels (cutoff, 0.14
�g/liter) did not differ from healthy control subjects and

was significantly higher compared with patients with ac-
tive disease (n � 25).

A discussion of treatment algorithms and biochemical def-
initions of disease activity for acromegaly has been the sub-
ject for several consensus statements and is not within the
scope of this review (235, 242–247). It is reasonable to state
that transsphenoidal surgery is the first choice of treatment,
but this procedure is not always feasible, and it offers ac-
ceptable disease control in no more than 60% of cases. The
use of radiation therapy varies between centers and coun-
tries, and data on its impact on glucose metabolism are lack-
ing. Medical therapy is frequently used in patients with
persistent disease after surgery and less frequently as pri-
mary treatment.

Dopamine agonists such as bromocriptine and cabergoline
have been used in the management of acromegaly for many
years. Cabergoline appears to be superior to bromocriptine
(248), but disease control is rarely obtained, and data on the
impact of dopamine agonists on glucose homeostasis are
limited (249).

Octreotide, a somatostatin analog with a prolonged half-
life relative to native somatostatin, was introduced for the
treatment of acromegaly more that 20 yr ago. The impact of
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FIG. 13. Effects of pharmacological antilipolysis on serum FFA levels
and insulin sensitivity in GHDA. Each patient was studied on four
occasions in a randomized design: 1) on regular GH therapy (GH only);
2) no treatment for 2 d; 3) regular GH therapy plus acipimox for 2 d
(GH�axipimox); and 4) only acipimox administration for 2 d (acipi-
mox only). Acipimox blocks lipolysis by inhibition of the hormone
sensitive lipase. A, Serum FFA levels in the basal state and during
a euglycemic clamp on each occasion. B, Insulin sensitivity assessed
by the euglycemic clamp. [Adapted from Ref. 76 with permission from
The American Diabetes Association].

FIG. 14. Substrate metabolism and insulin sensitivity in acromegalic
patients before (white bar) and after successful adenomectomy (gray
bar) and compared with a matched group of healthy subjects (hatched
bar). A, Lipid oxidation assessed by indirect calorimetry. B, Glucose
uptake across the forearm. C, Endogenous glucose production. D,
Insulin sensitivity as assessed by the M value. Measurements were
performed in the basal state (Basal) and during a euglycemic glucose
clamp (Clamp). [Adapted from Ref. 166 with permission from The
Endocrine Society].
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somatostatin analogs on glucose metabolism is difficult to
predict à priori due to their suppressive effects on the secre-
tion of insulin (250) and glucagon (251). Moreover, soma-
tostatin delays gastrointestinal glucose absorption (252, 253),
reduces the clearance of insulin (254), and may also improve
insulin-stimulated muscle glucose uptake via direct effects
(255). The initial formulation of octreotide was administered
as sc injections thrice daily, which in most patients resulted
in wide circadian fluctuations in serum GH levels with nadir
values obtained 2–3 h after each injection, followed by a
rebound increase after 4–6 h. Ho et al. (256) investigated the
impact of this treatment schedule on glucose tolerance and
insulin sensitivity in seven patients who were studied before
and after 7–14 months of octreotide with a final dose of 500
�g three times a day, but with octreotide administration
being omitted on the days of investigations. Glucose toler-
ance did not change significantly although insulin levels
tended to be lower after treatment. During a glucose clamp,
octreotide treatment was associated with an increase in GIR,
which however remained lower compared with healthy sub-
jects (256); glucose tracer data indicated that octreotide pre-
dominantly acted to suppress HGP during the clamp (256).
Koop et al. (257) measured glucose tolerance in 90 patients on
thrice daily octreotide from 10 different centers in a design
where the morning octreotide dose apparently was main-
tained. Bidirectional changes in glucose tolerance between
patients were observed, but on average a moderate impair-
ment occurred in conjunction with a reduction in insulin
secretion (257).

Depot preparations of somatostatin analogs, which are
administered every 2–4 wk and provide sustained and stable
reductions in circadian GH levels, have been available for
more than 10 yr and are now preferred by most clinicians
(258). Based on routine assessments, this treatment is tradi-
tionally not considered to be associated with major deteri-
oration in glucose homeostasis (258). Measurements of in-
sulin sensitivity by a euglycemic glucose clamp and glucose
tolerance were performed by Baldelli et al. (259) in 24 patients
with active acromegaly. The majority of patients had residual
disease after surgery, and a baseline assessment was per-
formed after withdrawal of medical treatment for at least 8
wk. The patients were then randomized to one of two depot
preparations of somatostatin [octreotide-LAR (20 mg im ev-
ery 4 wk; n � 10) or slow-release Lanreotide (30 mg im every
2 wk; n � 14)] and restudied after 6 months. The plasma
glucose value at 120 min after OGTT increased significantly
after somatostatin analog treatment among the patients, who
had a normal glucose tolerance at baseline (n � 16). In all
patients, basal insulin levels were significantly reduced by
the treatment, which also resulted in a delayed and reduced
insulin response to the OGTT (259). This was accompanied
by a minor but significant increase in HbA1c levels after
treatment. By contrast, insulin sensitivity (n � 12) increased
significantly and became normalized compared with a ref-
erence group of healthy subjects (259). No difference was
evident between the effects of the two somatostatin analogs.
In a retrospective survey including 110 patients treated with
octreotide-LAR for 18–54 months, no “clinically meaningful
increase in fasting glucose levels was observed (data not
shown)” (260). By contrast, a recent retrospective 6-yr fol-

low-up reported a deterioration in glucose tolerance in pa-
tients treated with long-acting somatostatin analogs (n � 36)
compared with patients who were successfully treated
with surgery alone (n � 33) (261). Fasting plasma glucose
levels, HbA1c levels, as well as plasma glucose levels
during an OGTT rose during medical treatment irrespec-
tive of the effect on GH status. In the surgically “cured”
patients, the corresponding glycemic indices were lower
and remained stable (261). However, insulin sensitivity, as
indirectly estimated from glucose and insulin levels in the
basal state and during the OGTT increased in patients who
achieved acceptable control of GH status with somatosta-
tin analogs (261).

Pegvisomant is a GH analog that functions as a specific
GHR antagonist. It includes a single-amino acid substitution
at position 120, which corresponds to binding site 2 for the
GHR, and eight amino acid substitutions within binding site
1, in addition to polyethylene glycol moieties that increase
the half-life of the molecule (262). It binds to the GHR in
competition with native GH and prevents conformational
changes of the preformed GHR dimer, which are critical for
signal transduction (262). Pegvisomant therapy effectively nor-
malizes IGF-I levels in more than 90% of patients, many of
whom were partially resistant to somatostatin analogs (263),
and this is associated with a reduction in fasting plasma glucose
concentrations (264) and HbA1c levels (265, 266).

The beneficial effects of pegvisomant on glucose metab-
olism seem to involve improvement of glucose tolerance
(267) as well as insulin sensitivity (268, 269). There are also
data to indicate that glucose tolerance improves in patients
partially resistant to somatostatin analogs if that treatment is
combined with pegvisomant (267, 270). In an interesting pilot
study, O’Connell and Clemmons (271) added the adminis-
tration of IGF-I plus IGFBP-3 to ongoing pegvisomant treat-
ment in five patients with acromegaly, which resulted in a
further improvement of insulin sensitivity. This finding sug-
gests direct insulin-sensitizing effects of IGF-I at least in this
experimental setting.

Patients with active acromegaly are characterized by in-
creased levels of FFA and other lipid intermediates together
with markedly increased lipid oxidation rates (166). This
occurs despite compensatory hyperinsulinemia (166) and
substantial changes of body composition, including a de-
creased fat mass (163), an increased LBM (272), and increased
total and extracellular body water (273). Data on protein
metabolism in acromegaly are sparse. It has recently been
reported that acromegalic patients have a high turnover state
with increased leucine rate of appearance (protein break-
down) and a high nonoxidative leucine disposal (protein
synthesis) (164). Another study comparing acromegalic pa-
tients with surgically cured patients and healthy controls
reported normal basal leucine kinetics, but decreased leucine
oxidation during a hyperinsulinemic clamp in untreated ac-
romegaly (162). Again, one has to consider the changes in
body composition when interpreting these data.

A. Conclusion

Active acromegaly is associated with glucose intolerance
despite compensatory hyperinsulinemia, and hepatic as well
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as peripheral insulin resistance, and it is likely that these
aberrations contribute to the excess mortality. These abnor-
malities are reversible after successful surgery, which is
achieved in approximately 60% of cases. Medical treatment
with slow-release formulations of somatostatin analogs is
preferred when surgery fails and in some cases also as pri-
mary treatment. The net effect on glucose metabolism seems
to be a moderate impairment of glucose tolerance, which is
not fully compensated by the improvement of insulin sen-
sitivity. Whether this bears any clinical significance remains
uncertain. Pegvisomant, which is a GH antagonist, has
proven very effective for the treatment of acromegaly be-
cause it normalizes IGF-I levels and induces symptom relief
in up to 90%. Moreover, pegvisomant treatment seems to
improve glucose tolerance as well as insulin sensitivity in
most patients.

VIII. Summary and Conclusions

“The growth of tissues in elderly acromegalic patients
indicates the continued responsiveness to GH long after full
height has been reached.”

The quotation above is one of several statements by Raben
in a seminal review of GH published more than 45 yr ago
(274, 275). The same paper included considerations about
potential indications for GH in addition to “pituitary dwarf-
ism,” e.g., other conditions of short stature in children, GH
deficiency in adults, and catabolic states.

Shortly thereafter, the revolutionary development of RIAs
disclosed the secretory pattern of multiple hormones includ-
ing GH and insulin. Zierler and Rabinowitz (34) combined
this information with metabolic data and proposed the hy-
pothesis of “a metabolic regulating device based on the ac-
tions of human GH and of insulin, singly and together, on the
human forearm.” According to this, substrate metabolism
cycles between feast and famine in three phases. In the im-
mediate postprandial period (phase I), insulin acts alone to
promote storage of glucose and fat. In the remote postab-
sorptive period (phase III), GH acts alone to mobilize FFA.
In the intermediate period (phase II), insulin and GH act in
synergy, possibly to stimulate protein synthesis. It is tempt-
ing to add that untoward effects are to be expected when this
pattern is perturbed. Notwithstanding its simplicity, we be-
lieve that this model has stood the test of time.

The prolific era of molecular biology led to the identifi-
cation and cloning of GH and its receptor and, not least, GH
signaling. The receptor belongs to the cytokine family, which
implies that many of the signaling pathways of GH are
shared by. e.g., several IL, erythropoietin, leptin, and pro-
lactin. Most of the data stem from studies in transfected cell
lines and rodent models, but it is also established that the
JAK/STAT pathway is critical for promoting the effects of
GH on longitudinal growth in children. Major areas for the
future would be a closer understanding of how specificity is
conveyed at the level of cytokine receptor signaling, includ-
ing the mechanisms whereby GH promotes its impact on
substrate metabolism. It has recently been documented that
exposure to endogenous as well as exogenous GH rapidly
translates into GH signaling events in muscle and fat in

human subjects. Moreover, with this model it has so far not
been possible to replicate data obtained in rodents which
indicate that GH causes insulin resistance in muscle by in-
terference with insulin signaling, in particular IRS-1-associ-
ated PI 3-kinase activity. Whether this discrepancy is based
on methodological issues or species-specific differences re-
mains to be investigated, but the human model seems to
provide a viable tool for translational research in GH sig-
naling. This could have important implications for under-
standing not only GH physiology and pathophysiology, but
also prevalent clinical conditions associated with insulin
resistance.

The manufacture of biosynthetic human GH has been an-
other important breakthrough within the last 20 yr. The
abundant supply of the authentic hormone prompted a very
large number of therapeutic and experimental trials, in par-
ticular in adult hypopituitary patients with GH deficiency.
As a result of this, replacement therapy with GH in these
patients has been a licensed indication for more than 10 yr,
although the penetration of the treatment differs consider-
ably between countries. At any rate, the studies in GHDA
have provided substantial data regarding the metabolic ef-
fects of GH in adulthood. Long-standing GHDA is associated
with insulin resistance, which probably is related to in-
creased abdominal adiposity, reduced LBM, and impaired
aerobic exercise capacity. Replacement therapy, in turn, nor-
malizes body composition and improves physical function.
Despite these effects, GH may further impair insulin sensi-
tivity. This is not surprising when considering that daily sc
administration of GH is unable to mimic the endogenous
pattern resulting from pituitary GH release, which allows
insulin to act independently due to postprandial suppression
of GH. With more prolonged GH therapy, the favorable
effects on body composition may offset the direct insulin
antagonistic effects, in particular if attention is paid to avoid
overdosing. Insulin resistance as a side effect to GH admin-
istration is no less surprising than the risk of hypoglycemia
with insulin therapy.

Studies of a more experimental nature with GH in GHDA
have also provided new insight into the mechanisms under-
lying the metabolic effects such as the close link between the
lipolytic effects and the resistance to insulin-induced glucose
disposal in muscle, and the important protein-conserving
effect of GH during fasting. Moreover, studies in GHDA have
generated novel data on the impact of GH on features such as
cardiac function, bone metabolism, lipoprotein metabolism,
thyroid hormones, and regional glucocorticoid interconversion,
most of which has been beyond the scope of this review.

Due to its anabolic and lipolytic properties, GH has also
been administered in different catabolic states such as the
frail elderly with sarcopenia and obese patients undergoing
caloric restriction. At the present stage, it is important to
emphasize that metaanalyses of published data do not justify
GH as either an antiaging treatment (276) or as adjunct treat-
ment in obesity (277). Whether GH in lower doses and/or in
combination with other protein anabolic substances such as
androgens (278) could have a role in chronic catabolic con-
ditions is an open question which needs more placebo-con-
trolled trials to be answered. So-called rejuvenation of GH
secretion in the elderly by means of GH secretagogues has
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also been evaluated, including a recent long-term trial (279,
280), and it does again remain a possibility that some in this
age group could benefit from more sophisticated anabolic
regimens, e.g., with low-dose GH usage.

GH treatment in HIV-associated wasting has been shown
in several randomized controlled trials to increase LBM and
body weight and to improve physical endurance and quality
of life, and GH is a Food and Drug Administration-approved
indication for this condition. It remains to be further inves-
tigated whether GH treatment also may cause a sustainable
beneficial effect on HIV-associated lipodystrophy. Elevation
of blood glucose levels is a frequent side effect of GH also in
these patients. The fatal outcome of trials involving patients
with acute critical illness as well as the serious complications
of acromegaly underscore more than anything that GH treat-
ment outside of the approved indications should not be
based on wishful thinking, but rather be confined to appro-
priately controlled and rigorously monitored trials. Having
said this, a worthy subject for future research would be to
dissect whether the detrimental effects of GH in acute critical
illness are due to metabolic aberrations or hitherto unrec-
ognized proinflammatory actions.

Medical treatment of acromegaly is another area that has
undergone major improvements and also provided further
insight into the metabolic effects of GH. Treatment with
slow-release formulations of somatostatin analogs is well
established and provides symptom relief, disease control,
and tumor shrinkage in a large proportion of patients. It does,
however, also cause a mild impairment of glucose tolerance,
in many cases owing to the fact that its suppressive effect on
insulin secretion is not always fully balanced by the con-
comitant improvement of insulin sensitivity. The GHR an-
tagonist, pegvisomant, seems to provide a more complete
suppression GH bioactivity, which also includes reversal of
glucose intolerance and insulin resistance. Indeed, this com-
pound may even induce functional GH deficiency in patients
with acromegaly. Data generated so far suggest that cotreat-
ment with somatostatin analogs and pegvisomant may offer
a favorable combination of tumor control and peripheral
blockade. Moreover, pegvisomant is an interesting experi-
mental tool for studying the metabolic actions of GH in other
conditions.

Future vistas of research related to the metabolic effects of
GH are multiple, and not all of them have been addressed in
this review. The discovery of ghrelin as an endogenous li-
gand for the so-called GH secretagogue receptor is one ex-
ample. This gut-derived peptide is not only a potent stim-
ulator of GH release when administered exogenously, but it
also possesses independent effects on substrate metabolism
and appetite regulation, which are just beginning to be un-
veiled. Moreover, it remains to be assessed to what degree
endogenous gut-derived ghrelin drives GH secretion. An-
other white spot on the map is the role of GH as a fat-burning
cytokine in the regulation of adipokines and myokines,
which may have implications for the understanding of fun-
damental conditions such as obesity, cardiovascular disease,
and aging processes. A third example could be to dissect the
contribution of circulating and local IGF-I to the metabolic
actions of GH, which may be achieved by continued work
with genetically manipulated mice models in combination

with renewed research with IGF-I administration—in com-
bination with IGFBPs and/or GH—in human subjects.

Exciting progress within the research of the regulation and
function of the GH-IGF-I axis during life span continues to
be made, and surprises are hopefully ahead. But data so far
confirm the statement by Bernardo A. Houssay in 1936 (28),
that “growth, endocrine regulation (including the reproduc-
tive functions), and metabolic regulation form the functional
trinity of the anterior pituitary gland.”
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